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8092 Zürich, Switzerland,www.wearable.ethz.ch

{ward,bhargava}@ife.ee.ethz.ch

(2) University of Passau
Innstrae 43, D-94032 Passau, Germany
paul.lukowicz@uni-passau.de

Abstract— In this paper we present and evaluate a
miniature, low power wearable platform for continuous
activity recognition. By continuous recognition we mean
that we can spot relevant activities in an unsegmented
stream of sensor data containing a considerable amount
of ’NULL class’ (arbitrary other activities performed by
the user). The main contribution of this work is to show
that such continuous recognition in a complex environment
is possible using an unobtrusive device that, including
battery and housing is the size of a standard watch and can
operate for around 25 hours without re- charging. This is
a perquisite for a practical implementation of a wide range
of applications such as assisted living, assembly support
and adaptive interfaces.

The device, having a thickness of 11 mm and a radius of
15.5 mm (plus 3 X 20 x 20 mm for the battery), makes use
of sound and acceleration information, recorded from the
user’s wrist, to recognise a selection of activities involving
the hand. Building on previous work by our group we fuse
the output of two separate classifiers: one using sound and
one using acceleration information to distinguish relevant
events from the NULL class.

To evaluate the system eight subjects were asked to
perform five repetitions of a predefined sequence of activies
(or ‘recipe’), each lasting between three and five minutes
(a total of 138min of continuous data). Disregarding timing
issues our system can achieve a frame by frame error rate
as low as 14%.

I. INTRODUCTION

The ability of a device to monitor and model the user’s
action and the situation in the surrounding is considered
to be one of the key features of future generation smart
appliances and mobile devices. Referred to as context
awareness it enables systems to automatically adjust the
functionality and configuration to the specific needs of
the user at a given moment (Abowdet al. [1]). The three
main approaches to achieving context awareness are: (1)

video/image analysis (e.g. Starner and Schiele [16]), (2)
the use of sensors integrated in the environment and
(3) the use of wearable sensors mounted on the user.
This paper deals with context recognition using wearable
sensors.

A major thrust in wearable context recognition re-
search is the use of sensors mounted on the user’s hand
and arm. In extensive previous work by the authors of
this paper, it was shown that it is possible to recognise a
subset of activities in a carpentry scenario using body
mounted accelerometers and microphones [19], [13].
These methods were also shown to work using only
wrist-worn sensors [17].

In terms of practical usability of a context recognition
system the wrist location is particularity attractive since
people are used to wearing watches. However such
systems are only viable if:

1) The inclusion of context recognition does not
increase the size and weight of the device beyond
what is acceptable for a standard watch

2) Even operating in a continuous mode the device
must be able to run for days without the need for
re-charging.

Initial work targetting the above considerations has been
performed by Krauseet al. [2]. They have optimised the
recognition of simple activities such as walking sitting,
standing from an accelerometer signal to run for several
hours on a wristwatch computer platform.

The work presented in this paper goes beyond both our
previous work and work by other groups in the following
way:

1) We address the spotting of complex activities such
as the individual steps of the cooking process.

2) We use not just an accelerometer but also a micro-
phone.
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3) We present the implementation of a complete
button size, ultra low power platform specifically
tailored for low power context recognition using
our methods.

4) We have implemented all our algorithms to per-
form on-line real time recognition on this plat-
form. While previous work by our group has used
accelerometers and microphones for low power
recognition, such on-line, on-device implementa-
tion has not been previously achieved.

As a validation of our system an eight-subject dataset
was collected using the wrist-worn device and used to
evaluate the recognition algorithms in two steps: first
we performed a ‘best-case’ evaluation using Matlab.
Disregarding timing errors we arrive at a frame by frame
error rate of 14%. We then did a full evaluation using the
IAR-workbench MSP simulation using the exact code
that runs on the wrist-worn device. This returned a frame
by frame error rate of 21%.

While a large error by some standards (e.g. compared
to speech and gesture recognition systems), consider-
ing the complexity of the task and the extremely low
resource consumption this is a reasonably satisfactory
results. We also believe that it is sufficient for many
(certainly not all) applications. Thus for example in
many nursing and assisted living scenarios dealing with
cognitive disorders the interesting parameter is the long
term trend of the daily routine of a person (erratic
deviations are a often a sign of emerging problems). In
such cases a larger frame by frame error rate should not
be a major problem in spotting such trends.

A. Related work

Westeynet al. [20] used wearable accelerometers to
spot certain behavioural activities in autistic children,
and Bao and Intille [4] to recognise multiple full-body
activities. Chamberset al. [9] investigated the recogni-
tion of certain Kung Fu moves by augmenting visual
recordings with wrist-worn accelerometer data. Of more
intricate hand activities, such as interaction with objects,
or gesticulation, there have been several works using
accelerometers - generally involving sensors either on
the objects being manipulated, as presented by Antifakos
et al. [3], or embedded in special gloves, as shown by
Fanget al. [11].

Staegeret al. [15] introduced a method of recognising
daily activities using sound. Peltonet al. [12] investi-
gated the use of sound for analysing situations, such as
detecting which location the user is in - bedroom, street,
church, etc. Büchler [8] presented a method of using
sound analysis to improve the performance of hearing

aids. More recently, Scottet al. [14] used sound for fine
grained location detection within a building. And in [10],
Chenet al. used sound - rather distastefully for some -
to detect activities in a bathroom.

Towards the vision of a wearable sensor node that is
small enough to be integrated into clothing, yet powerful
enough to be useful for activity and context recognition,
previous work at ETH has dealt with a number of
hardware issues such as suitable electronic packaging
[5], power and size optimisation for multi-sensor context
recognition [6] and development of hybrid micro power
supplies [7].

II. T HE SENSORBUTTON HARDWARE

The architecture of theSensorButtonis illustrated in
Figure 1 and its features are summarised in Table I. It
is composed of 4 main parts: digital, analog, RF and
power.

Digital: the SensorButtonis centred around a 4 MHz
16-bit MSP430F1611 micro-controller (Texas Instru-
ment). This micro-controller has 48KB of program Flash
memory, 256 bytes of data flash memory and 10KB
of data RAM. Though it requires a relatively small
amount of power (2.4mA at 4MHz and 3V), the MSP
is a full 16-bit micro-controller and includes a hardware
multiplication unit (e.g. for efficient multiply-accumulate
operations typical of digital signal processing applica-
tions).

The micro-controller is in charge of collecting data
and processing them (e.g. doing data classification or
compression). It has a 12-bit ADC converter with 8-input
channels that is used to sample analog sensor inputs.

The micro-controller also communicates with other
SensorButtonsor with a base station (e.g. a desktop
computer), either with the wireless link or over an RS-
232 serial line. An external extension board acts as an
RS-232 to USB interface so that a computer with an USB
port can communicate with the micro-controller over a
virtual COM port. This extension board may also be used
power theSensorButtonwith the power line derived from
the USB port. A JTAG interface allows to program the
micro-controller.

Analog: the SensorButtoncontains three sensors use-
ful for many wearable computing scenarios.

A 3-axis accelerometer provides acceleration informa-
tion that can be used in wearable systems to detect and
classify user motion (e.g. in this work the detection of
arm movement).

A MEMS microphone is also built in. This allows the
SensorButtonto sample and process audio data.

The SensorButtonhas a light sensor that allows en-
vironmental lighting to be used as an additional source
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Fig. 1. Architecture of the SensorButton

of information for wearable computing scenarios, e.g.
to detect day from night, or detect the hand going in a
pocket (light occlusion). In this work however, the light
sensor is not used.

All the sensors are filtered using a second order
Butterworth filter and are connected to one of the analog
inputs of the ADC converter of the micro-controller.

RF: the SensorButtonis fitted with a 2.45GHz shock
burst transceiver (nRF2401E, Nordic Semiconductors)
for wireless data transmission. This has a low power
consumption of 26 nJ/bit. The 2.4GHz frequency band
allows the use of a compact patch antenna (12.5mm x
4mm).

Power: the SensorButtonis powered by a lithium-
ion battery (130mAh, 3.7V) with a step-down converter
(TPS62220, Texas Instruments). An external power-
supply can be selected by toggling a miniature switch
(ESE157, Panasonic).

To reduce power consumption, the power to the
three sensors can be individually toggled by the micro-
controller via a CMOS analog switch (MAX4783,
Maxim).

We have also investigated a hybrid power supply
composed of a solar cell and a miniature battery for very
low power applications up to 1 mW. (This is not used
in the current work however).

• 4 MHz 16-bit MSP430F1611 micro-controller (Texas In-
struments)

• 48 KB Flash program memory
• 256 bytes Flash data memory
• 10 KB data RAM
• Battery: lithium-ion, 130mAh, 3.7V (LPP402025, Varta)
• 32KHz external clock feeding a digitally controlled oscil-

lator at 4MHz
• Wireless 1Mbps 2.45GHz transceiver (nRF2401E, Nordic

Semiconductors)
• 3 axis accelerometer (LIS3L03AQ, ST Microelectronics)
• Light sensor (SFH3410, OSRAM)
• Microphone (SPO1013, Knowles Acoustics)
• JTAG programming interface
• Serial line for data communication
• Physical characteristics: 31mm diameter, 11mm thickness,

12g weight

TABLE I

CHARACTERISTICS AND FEATURES OF THESensorButton.

A. Electrical and mechanical characteristics

Implementation-wise theSensorButtonis composed of
two stacked PCBs. The overall system size is 31mm
diameter and 11mm thick (7.2mm when PCBs are glued
together instead of stacked with connectors). The total
weight is 12g (including battery, excluding plastic cas-
ing). Figure 3 shows the assembledSensorButton. Figure
2 shows the two PCBs making up the device.

The micro-controller, the battery and serial I/O line are
located on the bottom PCB. The sensors (accelerometers,
light sensor and microphone) and RF link are located
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Fig. 2. SensorButtonPCBs. The bottom PCB (left column) contains
the micro-controller and power-supply. The top PCB (right column)
contains the sensors and the RF transceiver.

on the top PCB. Both PCBs have 4 layers: the top and
bottom layers with components, an internal ground layer
and an internal signal layer.

In order to reduce EMC (electromagnetic compatibil-
ity) problems the following steps were followed:

• The system is partitioned in digital, analog and RF
parts.

• The length of tracks carrying high currents are kept
short.

• Tracks that could influence each other are separated.
• Decoupling capacitors are used whenever necessary.
• Analog power is separated from the digital power

by a CLC filter.

Two connectors are used to stack the boards and
provide a stable mechanical connection between the two
boards besides the electrical connection. Analog signals
and power run on one connector, while the digital signals
for the RF-transceiver run on the other. The three power
lines that can be toggled by the micro-controller are
located on the analog connector, as well as the analog
signals. Analog signals include the sensors (accelerom-
eters, microphone and light sensor) and battery voltage
and optional solar cell voltage for monitoring purposes.

The stacked approach offers a lot of flexibility: the
sensors or the wireless communication device may be
changed by simply redesigning the top PCB while the
bottom PCB is left unchanged. Spare I/O lines may
also be used to seamlessly add new sensors to the
SensorButton.

III. E XPERIMENT

The kitchen scenario introduced in this paper uses
8 subjects (3 female and 5 male). All subjects were

Fig. 3. The complete SensorButton and power supply, mountedas
a wrist-worn unit

right handed and the same tools and workplace were
used throughout. The subjects were asked to follow a
recipe involving 12 different kitchen activities: scrubbing
vegetables under a running fawcet, peeling an apple,
taking objects from a drawer, grating a carrot, slicing
an apple, using an electric blender, pouring from a jug,
using an electric hand mixer, squirting lemon from a
dispenser, stirring with a fork, and cutting bread. Each
of these activities were separated by periods ofNULL -
moving around, picking up items, standing idle, etc. The
procedure, shown in Table II was repeated 5 times for all
but one of the subjects (due to various time and technical
issues that subject, a male, only managed 3 repetitions).

The entire dataset was collected using a single wrist-
worn SensorButton. A device was sewn to a fabric sleeve
and worn on the right wrist of each subject (the plastic
housing, shown in Figure 3, was a later addition). Raw
data from the 3-axis accelerometer, sampled at 109.9
Hz, and the microphone, sampled at 4.681 kHz, was
collected using a laptop with an RS232 connection to
the SensorButton. This data was then labelled by hand
- see Figure 5 for an example of the labelled data from
one of the subjects.

The experiment produced a dataset of 8303 seconds.
About 33% of the total time is taken up byNULL.

IV. RECOGNITION METHODS

Recognition is carried out by combining the out-
put of two classifiers (sound and acceleration) over a
fixed-width sliding window of lengthwlen. For sound
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scrub peel take from drawer grate

cut apple put in blender blend pour in bowl

mix add lemon stir cut bread

Fig. 4. The kitchen activities used in the experiment.

a spectrum pattern matching method based on Linear
Discriminant Analysis (LDA) is used. For acceleration,
Naive Bayes (NB) is used. The methods used here are
similar to those of our earlier work on carpentry tool-use
recognition [17].

A. Sound recognition using LDA

The LDA classification is carried out on a short
sliding window (or frame) of data,wlda. In keeping
with previous work, we usewlda =100ms, which slides
forward by 25ms after each calculation. At each step, an
FFT is applied producing anM -dimension vector (with
M typically being large). This vector is then reduced

in dimension after multiplication by the LDA transform
matrix (obtained from training data). The resultingN(=
#Classes−1) dimension vector is then compared to its
class means (also obtained from training) to produce a
list of class distances.

To produce a single result for the larger windowwlen,
the constituent LDA distance vectors must be combined.
This is done by taking the mean of the LDA distance
vectors overwlen for each class. Classification is then
simply a matter of choosing the minimum mean distance
vector.
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Fig. 5. Acceleration and sound signals acquired from one subject. Shaded areas mark hand-labelled ground truth for eachactivity.

1. scrub the carrot
2. take the peeler from the drawer
3. peel the carrot
4. take the grater from the drawer
5. grate the carrot
6. take the knife from the drawer
7. cut the apple into slices
8. put everything into the blender
9. blend everything
10. pour the blended carrots and apples into a bowl
11. mix it further with a hand mixer
12. add some lemon juice
13. take the fork from the drawer
14. stir the juice with the fork
15. cut 3 slices of bread

TABLE II

RECIPE FOR APPLE-CARROT JUICE

B. Acceleration recognition using NB

From the 109 Hz sampled raw acceleration data, two
different feature types are extracted for each of the raw
x, y & z-axes signals: the mean value overwlen; and a
count on the number of signal peaks overwlen. The mean
features help to give an estimation of the position and
movement of the hand, whereas the peak count features
help give a rough estimate of frequency.

The pre-calculated probability densitiy function (pdf),
obtained from a training step, can then be used to
approximate the NB likelihood for each class given the

incoming features.1

C. Comparison of top results (COMP)

Because the classifiers are based on completely dif-
ferent sensing modalities - sound and acceleration - the
chance that they will agree on a false classification is
low. In fact, given 12 classes, the probability of such
an occurrence happening randomly is12−2 = 0.007, or
about 0.7%.

COMP simply compares the two classifier outputs and
returns only those results which agree. If the classifiers
do not agree,NULL is returned.

V. PRELIMINARY RESULTS (USING ALL 12 ACTIVITY

CLASSES)

The LDA and NB methods all require training of
parameters using data. This was carried out in a user-
dependent, leave-one-out fashion. This is where, for each
user, one set is put aside for testing while the remaining
sets (from the same user) are used for training.

The system was initially evaluated across a sweep of
the window length parameterwlen. In an early study
(using just five of the eight subjects) this was found to
have most effect on the NB based classifier, as can be
seen by the varying recognition rates for the different

1Rather than calculate full probabilities, only the likelihoods from
the NB calculation are used in classification.
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classes in Figure 6. Settingwlen to 2 seconds was
found to produce a suitable compromise. Intuitively, the
suitability of such a large window stems from the fact
that all activities of interest in these experiments occur
at a timescale of at least several seconds. All further
analysis was carried out with this parameter set.

Acceleration feature window length (mean=pkcnt)
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Fig. 6. Influence on average class recognition (class relative recall)
for a selection of acceleration feature windows. The same size of
sliding window is used for both mean and peak count features.

For the FFT, 16, 32, 64, 128 and 256-bit implemen-
tations were evaluated. The average results of this for
each class are shown in Figure 7. For many classes, a
full 256-bit FFT produced the best results. However the
32-bit FFT was used in this work so as to avoid excessive
computation overheads on the (16-bit) MSP.
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Fig. 7. Influence on average class recognition rates for a selection
of FFT bit resolutions.

From the preliminary studies shown in Figure 6 and
Figure 7, it can be seen that some classes perform worse

than others. When LDA and NB classifiers are combined,
the classes peel, drawer, ‘put in blender’ and ‘add lemon’
become particularly troublesome. This is largely due to
the often very undefined manner in which these actions
are carried out: drawer, for example, involved subjects
opening and closing the drawer in a variety of ways -
sometimes not even using their hands. For this reason,
these classes were removed from further analysis by
assigning their labelling to NULL.

For the remainder of the results presented here, a
subset of eight activity classes were used. As a result of
relegating the poorly performing classes, the percentage
of NULL in the dataset grew from around 33% to 53%.

VI. RESULTS (USING EIGHT ACTIVITY CLASSES)

One method of evaluating continuous recognition re-
sults is to compare ground truth and prediction se-
quencies in a timewise (frame by frame) performance
analysis. Information on Correct Positives (CP), True
Negatives (TN), False Positives (FP), False Negatives
(FN) and Substitution errors, can then be summarised.

Figure 9 shows a bar chart of the basic summarising
counts for CP, TN, FP, FN and Substitutions over the
entire time of the eight-subject dataset. The LDA, NB,
and their combination results are shown here, all of
which are obtained from the Matlab analysis. Notice
how the combination method is able to returnNULL,
i.e. TN and FN, where the constituent classifiers cannot.
The combination method is able to drastically reduce
substitution errors from 6.8% for NB and 4.6% for LDA,
down to 0.3% (of the total time).

To get a more complete picture of these results,
these representations can be extended to take account
of additional information that is not available using tra-
ditional methods. In continuous time-based recognition,
the edges of events are often ill-defined and can be
subject tooverfill andunderfill. These are designated as
follows:

• overfill: when a continuous sequence of correct pre-
diction frames slip over the ground truth boundary
to coverNULL;

• underfill: the time left when a continuous sequence
of correct prediction frames does not completely
cover the corresponding ground truth.

Additionally, continuous recognition results represent-
ing a single event might be broken up into several;
or several events might be merged into one recognised
event. Two designations of error which account for these
phenomena - common to activity recognition problems
- are fragmentingandmerge:
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• fragmenting: when a continuous sequence of correct
prediction frames have been ‘broken up’ by small
insertions ofNULL

• merge: a single long continuous prediction covers
two or more separate ground truth events.

Figure 8 gives an idea of how these errors might look
(for a two-class output). For a more detailed account of
this method see [18].

The introduction of these additional categories means
that FP and FN are now subdivided into six: FP is
divided into overfill, merge and insertion; FN is divided
into underfill, fragmenting and deletion. The Serious
Error Level (SEL) is defined as the percentage of total
experiment time involving merge, insertion, fragmenting,
deletion and substitution errors.

In Figure 10 we see that underfill errors take up 4.7%
of the total error time (previously classed as FN); and
overfill takes up about 3% (previously FP).2 Although
the overall error rate of our system is about 21%, the
serious error rate is much less (14%).

Fig. 8. Different types of error in a timewise continuous recogni-
tion evaluation: insertion, deletion, merge, fragmenting, overfill and
underfill.

A. Results running on IAR-workbench MSP simulation

We implemented the algorithms in C and ran them
on the IAR- workbench simulation of the MSP used in
SensorButton. Using the pre-recorded dataset, we per-
formed the same analysis as was carried out in Matlab.
The results from this are shown in Figure 11

These results show a drop in overall performance by
about 30% of the total time - which translates to 7% if

2Note also that fragmenting errors occur for 2.2% of the activity
time (previously FN).
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we consider only serious error (SEL) - compared to the
Matlab implementation. This degradation in performance
manifests itself by the large increase in substitution
errors for both NB and LDA. One reason for this is the
necessary reductions in resolution required to implement
floating point calculations for both FFT and NB on the
MSP - a processor which does not naturally support such
operations.
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B. On-device operation

All the algorithms - data collection, feature calcula-
tion, continuous recognition - were compiled and run
on the SensorButton platform. The recognition output,
a single ASCII character for each of the LDA, NB and
COMP algorithms, was transmitted back to a PC via
wireless.

Only a preliminary function test could be carried out
for the on-device recognition. In order to carry out a
complete online, multi-subject study involving all aspects
of the continuous recognition process, a new sequence
of experiments must first be carried out3.

From these intial tests however, the power consump-
tion of the system during continuous recognition, in-
cluding wireless transmission, was measured to be 22.22
mW. Using a lithium-poly rechargeable battery with 150
mAh current capacity it should be possible to power the
system in full operation for around 25.25 hours.

VII. C ONCLUSION

In this paper we showed how a wrist-worn sensor
node, using a microphone and 3-axis accelerometer, can
be used to detect a set of activities from a kitchen
scenario. We have shown results in an offline multi-
subject study that indicates an overall error rate of
20%. When overfill and underfill are accounted for, the
frame by frame error drops to about 14% of the total
experiment time. When running the algorithms, ported to
16-bit MSP430 code, on an IAR-Workbench simulation,
the serious error goes up to around 21% (with overall
error 30%).

3At time of writing, this was work in progress.

At full continuous operation the device consumes
approximately 22mW. This means that with all the
algorithms running, including the wireless transmission
of the recognition results, the device can run unhindered
for about 25 hours.

A. Future work

We plan to have a complete multi-subject study for the
online device recognition. Further we plan to implement
improvements to the recognition algorithms (e.g. using
a more advanced classifier fusion).

We also hope to adapt a version of Tiny OS for
use on the SensorButton. This should provide a more
easy-to-use software platform for implementing different
recognition algorithms. In addition we are implementing
a multi-hop protocol for distributed on-body networking
and classification using several sensor button nodes.
This should provide a system that can perform activity
recognition using joint information from different parts
of the body.
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