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Abstract. The paper presents a technique to automatically track the progress of
maintenance or assembly tasks using body worn sensors. The technique is based on
a novel way of combining data from accelerometers with simple frequency matching
sound classification. This includes the intensity analysis of signals from microphones
at different body locations to correlate environmental sounds with user activity.
To evaluate our method we apply it to activities in a wood shop. On a simulated
assembly task our system can successfully segment and identify most shop activities
in a continuous data stream with zero false positives and 84.4% accuracy.

1 Introduction

Maintenance and assembly are among the most important applications of wearable com-
puting to date; the use of such technology in tasks such as aircraft assembly [17], vehicle
maintenance [4] and other on-site tasks [2,7] demonstrates a genuine utility of wearable
systems.

The key characteristic of such applications is the need for the user to physically and
perceptually focus on a complex real world task. Thus in general the user cannot devote
much attention to interaction with the system. Further the use of the system should not
restrict the operators physical freedom of action. As a consequence most conventional
mobile computing paradigms are unsuitable for this application field. Instead wearable
systems emphasizing physically unobtrusive form factor, hands free input, head mounted
display output and low cognitive load interaction need to be used.

Our work aims to further reduce the cognitive load on the user while at the same
time extending the range of services provided by the system. To this end we show how
wearable systems can automatically follow the progress of a given maintenance or assembly
task using a set of simple body worn sensors. With such context knowledge the wearable
could pro-actively provide assistance without the need for any explicit action by the user.
For example, a maintenance support system could recognize which particular subtask is
being performed and automatically display the relevant manual pages on the system’s



head-up display. The wearable could also record the sequence of operations that are being
performed for later analysis, or could be used to warn the user if an important step has
been missed.

1.1 Related Work

Many wearable systems explore context and proactiveness (e.g [1]) as means of reducing
the cognitive load on the user. Much work has also been devoted to recognition methods,
in particular the use of computer vision [20,24,25,16,15].

The application of proactive systems for assisting basic assembly tasks has been ex-
plored in [22], however this is built on the assumption of sensors integrated into the objects
being assembled, not on the user doing the assembly.

Activity recognition based on body worn sensors, in particular acceleration sensors,
has been studied by different research groups [11,14,23]. However all of the above work
focused on recognizing comparatively simple activities (walking, running, and sitting).
Sound based situation analysis has been investigated by Pelton et al. and in the wearables
domain by Clarkson and Pentland [12,5]. Intelligent hearing aids have also exploited sound
analysis to improve their performance [3].

1.2 Paper Aims and Contributions

This paper is part of our work aiming to develop a reliable context recognition methodology
based on simple sensors integrated in the user’s outfit and in the user’s artifacts (e.g.
tools, appliances, or parts of the machinery) [10]). It presents a novel way of combining
motion (acceleration) sensor based gesture recognition [8] with sound data from distributed
microphones [18]. In particular we exploit intensity differences between a microphone on
the wrist of the dominant hand and on the chest to identify relevant actions performed by
the user’s hand.

In the paper we focus on using the above method to track the progress of an assembly
task. As described above such tasks can significantly benefit from activity recognition. At
the same time they tend to be well structured and limited to a reasonable number of often
repetitive actions. In addition, machines and tools typical to a workshop environment
generate distinct sounds. Therefore these activities are well suited for a combination of
gesture and sound–based recognition.

This paper describes our approach and the results produced in an experiment per-
formed on an assembly task in a wood workshop. We demonstrate that simple sensors
placed on the user’s body can reliably select and recognize user actions during a workshop
procedure.

2 Experimental Setup

Performing initial experiments on live assembly or maintenance tasks is inadvisable due
to the cost and safety concerns and the ability to obtain repeatable measurements under
experimental conditions. As a consequence we have decided to focus on an “artificial”
task performed at the workbench of wood workshop of our lab (see Figure 1). The task
consisted of assembling a simple object made of two pieces of wood and a piece of metal.
The task required 8 processing steps using different tools; these were intermingled with
actions typically exhibited in any real world assembly task, such as walking from one place
to another or retrieving an item from a drawer.



Fig. 1. The wood workshop (left) with (1) grinder, (2) drill, (3) file and saw, (4) vise, and (5)
cabinet with drawers. The sensor type and placement (right): (1,4) microphone, (2,3,5) 3-axis
acceleration sensors and (6) computer

2.1 Procedure

The assembly sequence consists of sawing a piece of wood, drilling a hole in it, grinding
a piece of metal, attaching it to the piece of wood with a screw, hammering in a nail to
connect the two pieces of wood, and then finishing the product by smoothing away rough
edges with a file and a piece of sandpaper. The wood was fixed in the vise for sawing, filing,
and smoothing (and removed whenever necessary). The test subject moved between areas
in the workshop between steps. Also, whenever a tool or an object (nail screw, wood) was
required, it was retrieved from its drawer in the cabinet and returned after use.

The exact sequence of actions is listed in Table 1. The task was to recognize all tool-
based activities. Tool-based activities exclude drawer manipulation, user locomotion, and
clapping (a calibration gesture). The experiment was repeated 10 times in the same se-
quence to collect data for training and testing. For practical reasons, the individual pro-
cessing steps were only executed long enough to obtain an adequate sample of the activity.
This policy did not require the complete execution of any one task (e.g. the wood was not
completely sawn), allowing us to complete the experiment in a reasonable amount of time.
However this protocol influenced only the duration of each activity and not the manner
in which it was performed.

2.2 Data Collection System

The data was collected using the ETH PadNET sensor network [8] equipped with 3 axis
accelerometer nodes and two Sony mono microphones connected to a body worn computer.



No action

1 take the wood out of the drawer
2 put the wood into the vise
3 take out the saw
4 saw
5 put the saw into the drawer
6 take the wood out of the vise
7 drill
8 get the nail and the hammer
9 hammer
10 put away the hammer, get the driver and the screw
11 drive the screw in
12 put away the driver
13 pick up the metal
14 grind
15 put away the metal, pick up the wood
16 put the wood into the vise
17 take the file out of the drawer
18 file
19 put away the file, take the sandpaper
20 sand
21 take the wood out of the vise

Table 1. Steps of workshop assembly task

The position of the sensors on the body is shown in Figure 1: an accelerometer node on
both wrist and on the upper arm of the right hand, and a microphone on the chest and
on the right wrist (the test subject was right handed).

As can be seen in Figure 1 each PadNET sensor node consist of two modules. The main
module incorporates a MSP430149 low power 16-Bit mixed signal microprocessor (MPU)
from Texas Instruments running at 6 MHz maximum clock speed. The current module
version reads out up to three analog sensor signals including amplification and filtering
and handles the communication between modules through dedicated I/O pins. The sensors
themselves are hosted on an even smaller ’sensor-module’ that can be either placed directly
on the main module or connected through wires. In the experiment described in this paper
sensor modules were based on a 3-axis accelerometer package consisting of two ADXL202E
devices from Analog Devices. The analog signals from the sensor were lowpass filtered
(fcutoff = 50Hz) and digitized with 12Bit resolution using a sampling rate of 100Hz.

3 Recognition

3.1 Acceleration Data Analysis

Figure 2 (left) shows a segment of the acceleration data collected during the experiment.
The segment includes sawing, removing the wood from the vise, and drilling. The user
accesses the drawer two times and walks between the vise and the drill. Clear differences
can be seen in the acceleration signals. For example, sawing clearly reflects a periodic
motion. By contrast, the drawer access (marked as 1a and 1b in the figure) shows a low
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Fig. 2. Example accelerometer data from sawing and drilling (left); audio profile of sanding from
wrist and chest microphones (top right); and clustering of activities in LDA space (bottom right)

frequency “bump” in acceleration. This bump corresponds to the 90 degree turns of the
wrist as the user releases the drawer handle, retrieves the object, and grasps the handle
again to close the drawer.

Given the data, time series recognition techniques such as hidden Markov models
(HMMs) [13] should allow the recognition of the relevant gestures. However, a closer
analysis reveals two potential problems. First, not all relevant activities are strictly con-
strained to a particular sequence of motions. While the characteristic motions associated
with sawing or hammering are distinct, there is high variation in drawer manipulation and
grinding. Secondly, the activities are separated by sequences of user motions unrelated
to the task (e.g the user scratching his head). Such motions may be confused with the
relevant activities. We define a “noise” class to handle these unrelated gestures.

3.2 Sound Data Analysis

Considering that most gestures relevant for the assembly/maintenance scenario are asso-
ciated with distinct sounds, sound analysis should help to address the problems described
above. We distinguish between three different types of sound:

1. Sounds made by a hand-tool: - Such sounds are directly correlated with user hand
motion. Examples are sawing, hammering, filing, and sanding. These actions are gen-
erally repetitive, quasi–stationary sounds (i.e. relatively constant over time - such that
each time slice on a sample would produce an identical spectrum over a reasonable
length of time). In addition these sounds are much louder than the background noise
(dominant) and are likely to be much louder at the microphone on the user’s hand
than on his chest. For example, the intensity curve for sanding (see Figure 2 top right)
reflects the periodic sanding motion with the minima corresponding to the changes in
direction and the maxima coinciding with the maximum sanding speed in the middle
of the motion. Since the user’s hand is directly on the source of the sound the inten-
sity difference is large. For other activities it is smaller, however in most cases still
detectable.



2. Semi-autonomous sounds: These sounds are initiated by user’s hand, possibly (but
not necessarily) remaining close to the source for most of the sound duration. This
class includes sound produced by a machine, such as the drill or grinder. Although
ideal quasi-stationary sounds, sounds in this class may not necessarily be dominant
and tend to have a less distinct intensity difference between the hand and the chest
(for example, when a user moves their hand away from the machine during operation).

3. Autonomous sounds: These are sounds generated by activities not driven by the user’s
hands (e.g loud background noises or the user speaking).

Obviously the vast majority of relevant actions in assembly and maintenance are associated
with handtool sounds and semi–autonomous sounds. In principle, these sounds should be
easy to identify using intensity differences between the wrist and the chest microphone. In
addition, if extracted appropriately, these sounds may be treated as quasi-stationary and
can be reliably classified using simple spectrum pattern matching techniques.

The main problem with this approach is that many irrelevant actions are also likely to
fall within the definition of hand-tool and semi–autonomous sound. Such actions include
scratching or putting down an object. Thus, like acceleration analysis, sound–based classi-
fication also has problem distinguishing relevant from irrelevant actions and will produce
a number of false positives.

3.3 Recognition Methodology

Neither acceleration nor sound provide enough information for perfect extraction and
classification of all relevant activities; however, we hypothesize that their sources of error
are likely to be statistically distinct. Thus, we develop a technique based on the fusion of
both methods. Our procedure consists of three steps:

1. Extraction of the relevant data segments using the intensity difference between the
wrist and the chest microphone. We expect that this technique will segment the data
stream into individual actions

2. Independent classification of the actions based on sound or acceleration. This step will
yield imperfect recognition results by both the sound and acceleration subsystems.

3. Removal of false positives. While the sound and acceleration subsystems are each
imperfect, when their classifications of a segment agree, the result may be more reliable
(if the sources of error are statistically distinct).

4 Isolated Activity Recognition

As an initial experiment, we segment the activities in the data files by hand and test the
accuracy of the sound and acceleration methods separately. For this experiment, the non-
tool gestures, drawer and clapping, are treated as noise and as such are not considered
here.

4.1 Accelerometer–Based Activity Recognition

Hidden Markov models (HMMs) are probabilistic models used to represent non-deterministic
processes in partially observable domains and are defined over a set of states, transitions,



and observations. Details of HMMs and the respective algorithms are beyond the scope of
this paper but may be found in Rabiner’s tutorial on the subject [13].

Hidden Markov models have been shown to be robust for representation and recognition
of speech [9], handwriting [19], and gestures [21]. HMMs are capable of modeling important
properties of gestures such as time variance (the same gesture can be repeated at varying
speeds) and repetition (a gesture which contains a motion which can be repeated any
number of times). They also handle noise due to sensors and imperfect training data by
providing a probabilistic framework.

For gesture recognition, a model is trained for each of the gestures to be recognized. In
our experiment, the set of gestures includes saw, drill, screw, hammer, sand, file and vise.
Once the models are trained, a sequence of features can be passed to a recognizer which
calculates the probability of each model given the observation sequence and returns the
most likely gesture. For our experiments, the set of features consist of readings from the
accelerometers positioned at the wrist and at the elbow. This provides 6 total continuous
feature values - the x,y and z acceleration readings for both positions - which are then
normalized to sum to one and collected at approximately 93 Hz.

We found that most of the workshop activities typically require only simple single
Gaussian HMMs for modeling. For file, sand, saw, and screw, a 5 state model with 1
skip transition and 1 loop-back transition suffice because they consist of simple repetitive
motions. Drill is better represented using a 7 state model, while grinding is again more
complex, requiring a 9 state model. The vise is unique in that it has two separate motions,
opening and closing. Thus a 9 state model is used with two appropriate loop-backs to cor-
rectly represent the gesture (See Figure 3). These models were selected through inspection
of the data, an understanding of nature of the activities, and experience with HMMs.

4.2 HMM Isolation Results

For this project, a prototype of the Georgia Tech Gesture Recognition Toolkit was used
to train the HMMs and for recognition. The Toolkit is an interface to the HTK toolkit
[26] designed for training HMMs for speech recognition. HTK handles the algorithms for
training and recognizing the Hidden Markov Models allowing us to focus primarily on
properly modeling the data.

To test the performance of the HMMs in isolation, the shop accelerometer data was
partitioned by hand into individual examples of gestures. Accuracy of the system was
calculated by performing leave-one-out validation by iteratively reserving one sample for
testing and training on the remaining samples for each sample. The HMMs were able to
correctly classify 95.51% of the gestures over data collected from the shop experiments.
The rates for individual gestures are given in Table 2.

4.3 Sound Recognition

Method

The basic sound classification scheme operates on individual frames of length tw sec-
onds. The approach follows a three step process: feature extraction, dimensionality reduc-
tion, and the actual classification.

The features used are the spectral components of each tw obtained by Fast Fourier
Transformation (FFT). This produces N = fs

2
· tw dimensional feature vectors, where fs

is sample frequency. Rather than attempting to classify such large N -dimensional vectors



directly, Linear Discriminant Analysis (LDA)[6] is employed to derive an optimal projec-
tion of the data into a smaller, M dimensional feature space (where M is the number of
classes). In the “recognition phase”, the LDA transformation is applied to the data frame
under test to produce the corresponding M − 1 dimensional feature vector.

Using a labeled training-set, class means are calculated in the M−1 dimensional space.
Classification is performed simply by choosing the class mean which has the minimum
Euclidean distance from the test feature vector (see Figure 2 bottom right).
Intensity Analysis

Making use of the fact that signal intensity is inversely proportional to the square of the
distance from its source, the ratio of the two intensities Iwrist/Ichest is used as a measure
of absolute distance of source from the user. Assuming the sound source is distance d
from the wrist microphone and d + δ from the chest, the ratio of the intensities will be
proportional to

Iwrist

Ichest

'

(d + δ)2

d2
=

d2 + 2dδ + δ2

d2
= 1 +

2δ

d
+

δ2

d2

When both microphones are separated by at least δ, any sound produced at a distance
d ( where d >> δ ) from the user will bring this ratio close to one. Sounds produced near
the chest microphone (e.g. the user speaking) will cause the ratio to approach zero whereas
any sounds close to the wrist mic will make this ratio large.

Sound extraction is performed by sliding a window wia over the fs Hz resampled audio
data. On each iteration, the signal energy over wia for each channel is calculated. For
these windows, the difference in ratio Iwrist/Ichest and its reciprocal are obtained, which
are then compared to an empirically obtained threshold thia.

The difference Iwrist/Ichest−Ichest/Iwrist provides a convenient metric for thresholding
- zero indicates a far off (or exactly equidistant) sound; while above or below zero indicate
a sound closer to the wrist or chest microphone respectively.

4.4 Results

In order to analyze the performance of the sound classification, individual examples of each
class were hand partitioned from each of the 10 experiments. This provided at least 10
samples of every class - some classes had more samples on account of more frequent useage
(e.g. vise). From these, two samples of each class were used for training while testing was
performed on the rest.

Similar work[18] used FFT parameters of fs=4.8kHz and tw=50 ms (256 points), for
this experiment tw was increased to 100 ms. With these parameters LDA classification was
applied to successive tw frames within each of the class partitioned samples - returning a
hard classification for each frame. Judging accuracy by the number of correctly matching
frames over the total number of frames in each sample, an overall recognition rate of
90.18% was obtained. Individual class results are shown in the first column of Table 2. We
then used intensity analysis to select those frames corresponding to where source intensity
ratio difference surpassed a given threshold. With LDA classification applied only to these
selected frames, the recognition improved slightly to a rate of 92.21% (second column of
Table 2.)

To make a comparison with the isolated accelerometer results, a majority decision
was taken over all individual frame results within each sample to produce an overall
classification for that gesture. This technique resulted in 100% recognition over the sound
test data in isolation.



Sound Acceleration

Gesture LDA IA+LDA maj(IA+LDA) HMM

Hammer 96.79 98.85 100 100

Saw 92.71 92.98 100 100

Filing 69.68 81.43 100 100

Drilling 99.59 99.35 100 100

Sanding 93.66 92.87 100 88.89

Grinding 97.77 97.75 100 88.89

Screwing 91.17 93.29 100 100

Vise 80.10 81.14 100 92.30

Overall 90.18 92.21 100 95.51

Table 2. Isolated recognition accuracy (in %) for sound LDA, LDA with IA preselection, majority
decision over IA+LDA, and for acceleration based HMM

Fig. 3. HMMs topologies



5 Continuous Recognition

Recognition of gestures from a continuous stream of features is difficult. However, we can
simplify the problem by partitioning the continuous stream into segments and attacking
the problem as isolated recognition. This approach requires a method of determining a
proper partitioning of the continuous stream. We take advantage of the intensity analysis
described in the previous section as a technique for identifying appropriate segments for
recognition.

Since neither LDA nor the HMM are perfect at recognition, and each is able to recognize
a different set of gestures well due to working in different feature space, it is advantageous to
compare their independent classifications of a segment. If the classification of the segment
by the HMMs matches the classification of the segment by the LDA, the classification can
be believed. Otherwise, the noise class can be assumed, or perhaps a decision appropriate
to the task can be taken (such as requesting additional information from the user).

Thus, the recognition is performed in three main stages: 1) Extracting potentially
interesting partitions from the continuous sequence, 2) Classifying these individually using
the LDA and HMMs, and 3) Combining the results from these approaches.

5.1 LDA for partitioning

For classification, partitioned data needs to be arranged in continuous sections corre-
sponding to a single user activity. Such partitioning of the data is obtained in two steps:
First, LDA classification is run on segments of data chosen by the IA. Those segments
not chosen by intensity analysis are returned with classification zero. (In this experiment,
classifications are returned at the same rate as accelerometer features); Secondly, these
small window classifications are further processed by a larger (several seconds) majority
decision window, which returns a single result for the entire window duration.

This partitioning mechanism helps reduce the complexity of continuous recognition.
It will not give accurate bounds on the beginning and end of a gesture. Instead, the goal
is to provide enough information to generate context at a general level, i.e., “The user
is hammering” as opposed to “A hammering gesture occurred between sample 1500 and
2300.” The system is tolerant of, and does not require, perfect alignment between the
partitions and the actual gesture. The example alignment shown in Figure 4 is acceptable
for our purposes.

5.2 Partitioning Results

Analysis of the data was performed to test the system’s ability to reconstruct the sequence
of gestures in the shop experiments based on the partitioning and recognition techniques
described to this point. Figure 5 shows an example of the automated partitioning versus
the actual events. The LDA classification of each partition is also shown. For this analysis
of the system, the non-tool gestures, drawer and clapping, were considered as part of the
noise class. After applying the partition scheme, a typical shop experiment resulted in
25-30 different partitions.

5.3 HMM Classification

Once the partitions are created by the LDA method, they are passed to set of HMMs for
further classification. For this experiment, the HMMs are trained on individual gestures



from the shop experiments using 6 accelerometer features from the wrist and elbow. Ideally,
the HMMs will return a single gesture classification for each segment. However, the segment
sometimes includes the beginning or end of the next or previous gesture respectively,
causing the HMMs to return a sequence of gestures. In such cases, the gesture which makes
up the majority of the segment is used as the classification. For example the segment
labeled “B” in Figure 4 may return the sequence “hammer vise” and would then be
assigned as the single gesture “vise.”

5.4 Combining LDA and HMM classification

For each partitioned segment, the classification of the LDA and HMM methods were
compared. If the classifications matched, that classification was assigned the segment.
Otherwise, the noise class was returned.

Drawer Hammer Vice

Actual

LDA Partition
B

Fig. 4. Detailed example of LDA partitioning
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Fig. 5. LDA partitions versus ground truth on a typical continuous dataset



Gesture HMM LDA HMM + LDA

C I D S Acc C I D S Acc C I D S Acc P(G|Class)

Hammer 8 2 0 1 66.7 9 1 0 0 88.9 8 0 1 0 88.9 1.00

Saw 9 0 0 0 100 9 1 0 0 88.9 9 0 0 0 100 1.00

Filing 10 0 0 0 100 9 7 0 1 23.2 9 0 1 0 90 1.00

Drilling 9 7 0 0 22.2 9 1 0 0 88.9 9 0 0 0 100 1.00

Sanding 8 0 0 1 77.8 9 8 0 0 11.1 8 0 1 0 88.9 1.00

Grinding 11 13 0 0 -18.2 9 0 0 2 81.8 9 0 2 0 81.8 1.00

Screw 5 1 0 4 44.4 9 75 0 0 -733.3 4 0 5 0 44.4 1.00

Vise 42 0 0 1 97.7 34 1 2 7 76.6 36 0 7 0 83.7 1.00

Overall 102 23 0 7 72.5 97 94 2 10 2.8 92 0 17 0 84.4 1.00

Table 3. Continuous recognition accuracy per gesture (Correct | Insertions | Deletions | Substi-
tutions | Accuracy) and probability of gesture given classification P(G|Class)

Table 3 shows the number of correct classifications (C), insertions (I), deletions (D),
and substitutions(S) for the HMMs, the LDA, and the combination. Insertions are defined
as noise gestures identified as a tool gesture. Deletions are tool gestures recognized as noise
gestures. A substitution for a gesture occurs when that gesture is incorrectly identified as
a different gesture. In addition, the accuracy of the system is calculated based on the
following metric:

%Accuracy =
Correct − Insertions

TotalSamples

The final column reports the probability of a gesture having occurred given that the
system reported that gesture.

Clearly, the HMMs and LDA each perform better than the other on various gestures
and tended to err in favor of a particular gesture. When incorrect, LDA tended to report
the “screw” gesture. Similarly, the HMMs tended to report “grinding” or “drilling.” Com-
paring the classification significantly helps address this problem and reduce the number of
false positives, thus increasing the performance of the system as a whole. The data shows
that the comparison method performed better than the HMMs and the LDA in many
cases and improved the accuracy of the system.

6 Discussion

Although the accuracy of the system in general is not perfect, it is important to note that
the combined HMM + LDA method results in no insertions or substitutions. This result
implies that when the system returns a gesture, that gesture did occur. While the system
still misses some gestures, the fact that it does not return false positives allows a user
interface designer to be more confident in his use of positive context.

Of course for many applications deletions are just as undesirable as false positives. In
a safety monitoring scenario for example, any deletions of alarm or warning events would
naturally be unnaceptable. In such cases it would be better for the system to return some
warning, however erroneous, rather than none at all. On the other hand, if one sensor
is known to produce many false positives in particular circumstances, whereas another is



known to be extremely reliable for the same, then some means of damping the influence
of the first in favour of the second sensor would be desirable.

The simple fusion scheme described in this paper could be modified to accomodate
these issues by weighting sensor inputs based on knowledge of their reliability in given cir-
cumstances. Such weighting, together with decision likelihood information from individual
classifiers, would allow a more intelligent fusion scheme to be developed. This will be the
focus of future work.

7 Conclusion

We have shown a system capable of segmenting and recognizing typical user gestures in
a workshop environment. The system uses wrist and chest worn microphones and ac-
celerometers, leveraging the feature attributes of each modality to improve the system’s
performance. For the limited set analyzed, the system demonstrated perfect performance
in isolated gesture testing and a zero false positive rate in the continuous case. In the
future, we hope to apply these promising techniques, together with more advanced meth-
ods for sensor fusion, to the problem of recognizing everyday gestures in more general
scenarios.
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