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ABSTRACT
In this work we investigate eye movement analysis as a new
modality for recognising human activity. We devise 90 dif-
ferent features based on the main eye movement character-
istics: saccades, fixations and blinks. The features are de-
rived from eye movement data recorded using a wearable
electrooculographic (EOG) system. We describe a recogni-
tion methodology that combines minimum redundancy max-
imum relevance feature selection (mRMR) with a support
vector machine (SVM) classifier. We validate the method in
an eight participant study in an office environment using five
activity classes: copying a text, reading a printed paper, tak-
ing hand-written notes, watching a video and browsing the
web. In addition, we include periods with no specific activity.
Using a person-independent (leave-one-out) training scheme,
we obtain an average precision of 76.1% and recall of 70.5%
over all classes and participants. We discuss the most rele-
vant features and show that eye movement analysis is a rich
and thus promising modality for activity recognition.
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INTRODUCTION
Activity recognition has been studied by many researchers.
A variety of indoor physical activities can be recognised us-
ing ambient sensors [21, 12]. Body-worn sensors have been
extensively used to recognise activities in mobile and daily
life situations [16, 18]. A rich source of information about
a person’s context yet under-investigated are the movements
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of the eyes. Eye movement characteristics have the potential
to reveal a lot about our daily life. This includes information
on visual tasks, such as reading [4], but also on cognitive pro-
cesses of visual perception, such as attention [20] or saliency
determination [15]. Because we use our eyes in almost every-
thing that we do, it is conceivable that eye movements may
provide a useful information source for activity recognition.

The aim of this work is to assess the feasibility of recognis-
ing human physical activity using eye movement analysis.
We see two basic approaches for linking eye movements to
physical activity. The first is to define activities using a gram-
mar built upon an alphabet of basic eye movement atoms
(e.g. left, right, up and down). However, it is not yet clear
how alphabets and grammars of eye movements should be
defined - if this is possible at all. The second approach, and
the one taken in this work, is to define a set of physical activ-
ities and then to attempt to infer these from eye movement
data using machine learning techniques.

We first develop a set of 90 features that best describe the
eye movement data; some based directly on fundamental eye
movement characteristics, others devised to capture partic-
ular eye movement dynamics. We then rank and evaluate
these features using minimum redundancy maximum rele-
vance feature selection (mRMR) and a support vector ma-
chine (SVM) classifier. To evaluate both algorithms on a real-
world example we devise an experiment involving a continu-
ous sequence of five physical office activities, plus a period
without any specific activity (the NULL class). The activities
we investigate are: copying a text, reading a printed paper,
taking hand-written notes, watching a video, and browsing
the web. We choose these activities for two reasons. Firstly,
they are all commonly performed during a typical working
day. Secondly, they exhibit interesting eye movement pat-
terns that are both structurally diverse, and that have varying
levels of complexity. We believe these activities thus well
represent the broad range of activities observable in daily
life. We record and annotate an eight participant dataset us-
ing wearable electrooculography (EOG). In contrast to com-
monly used video-based systems, EOG is a cheap method
for mobile eye movement recordings; it is both computation-
ally light-weight (no demanding video processing) and rela-
tively unobtrusive (no bulky equipment) [3].

The specific contributions of our work are: (1) an annotated
dataset of participants performing five different real-world
office activities in a continuous sequence; (2) a new method
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for analysing repetitive eye movements using a wordbook en-
coding scheme; (3) the development of 90 features extracted
from eye movement characteristics and geared towards eye-
based activity recognition; and (4) an evaluation of these
features and their application to activity recognition using
mRMR feature selection and SVM classification.

In the remainder of the paper we first survey related work,
introduce EOG and describe the main eye movement char-
acteristics. We then detail the signal processing required to
detect these characteristics in EOG signals and describe the
extracted features and the algorithms for feature selection
and classification. Afterwards, we elaborate on the experi-
ment, discuss the results and give an outlook to future work.

RELATED WORK
In recent work, Logan et al. aimed at recognising common
activities in an indoor setting using a large variety and num-
ber of ambient sensors [21]. They found that activities typi-
cally performed in the same location could be recognised us-
ing only one sensor. They also found that mobile activities
such as reading or using the phone were much harder to de-
tect. They concluded that for these activities additional sen-
sor modalities would be needed. Bao et al. used body-worn
accelerometers to detect physical activities under real-world
conditions [2]. Using a decision tree classifier they reported
accuracies of over 80%. They discovered that although some
activities (e.g. stretching) require person-specific training,
most (such as walking and running) could be recognised us-
ing independent training. Huynh et al. introduced a novel
approach for modelling daily routines using data recorded
by on-body sensors [16]. They converted sensor data into
a series of documents that were mined for activity patterns.
In a single-person study using seven days of real-world data
they showed that the detected patterns are highly correlated
to behaviour and daily routine.

Eye movement analysis has a long history as a tool to in-
vestigate visual behaviour. In an early study, Hacisalihzade
et al. used Markov processes to model visual fixations of
observers recognising an object [14]. They transformed fix-
ation sequences into character strings and used the string
edit distance to quantify the similarity of eye movement se-
quences. Elhelw et al. used discrete time Markov chains to
investigate the sequence of temporal fixations [11]. The goal
was to identify salient image features that affect the percep-
tion of visual realism. They found that fixation clusters were
able to uncover the features that most attract an observer’s at-
tention. Dempere-Marco et al. presented a method for train-
ing novices in assessing tomography images [8]. They mod-
elled the assessment behaviour of two domain experts based
on the dynamics of their saccadic eye movements. Salvucci
et al. evaluated means for automated analysis of eye move-
ment protocols [25]. They described three methods based
on sequence-matching and Hidden Markov Models. Their
methods were able to interpret eye movements as accurately
as human experts but in significantly less time.

All of these studies analysed eye movement characteristics
and successfully modelled visual behaviour during specific

tasks in an automatic manner. However, eye movement anal-
ysis has so far only rarely been used as a modality for activity
recognition. In an earlier study, we investigated the recogni-
tion of reading activity of people in transit in a variety of
daily-life settings [4]. Using a string matching algorithm
applied to recorded EOG signals and person-independent
training, we were able to achieve recognition rates of up to
80.2%. However, the methodology developed in that study
was geared towards recognising only one specific activity.

EYE MOVEMENT ANALYSIS
Wearable Electrooculography
The human eye can be modelled as a dipole with its positive
pole at the cornea and its negative pole at the retina. Assum-
ing a stable corneo-retinal potential difference (CRP), the
eye is the origin of a steady electric potential field. The cor-
responding electrical signal, the so-called Electrooculogram
(EOG), can be measured using a pair of electrodes placed
on the skin at opposite sides of the eye. If the eye moves
from the centre position towards the periphery, the retina
approaches one electrode while the cornea approaches the
opposing one. This change in dipole orientation causes a
change in the electric potential field and thus the measured
EOG signal amplitude. By analysing these changes, eye
movements can be tracked. Using two pairs of electrodes
appropriately positioned around the eye, two signal compo-
nents (EOGh and EOGv) corresponding to two movement
components - a horizontal and a vertical - can be identified.

Baseline drift
Baseline drift is a slow signal change superposing the EOG
signal but mostly unrelated to eye movements. It has many
possible sources, e.g. interfering background signals or elec-
trode polarisation [13]. Baseline drift only marginally influ-
ences the EOG signal during fast eye movements; all other
movements are subject to baseline drift. In a five electrode
setup, as used in this work, baseline drift may differ between
the horizontal and vertical EOG signal components.

Eye Movement Characteristics
To be able to use eye movement analysis for activity recogni-
tion, it is important to understand the three main eye move-
ment types: saccades, fixations and blinks (see Figure 1).

Saccades
The eyes do not remain still when viewing a visual scene;
they have to move constantly to build up a mental “map”
from interesting parts of the scene. The main reason for this
is that only a small central region of the retina, the fovea, is
able to perceive with high acuity. The simultaneous move-
ment of both eyes is called a saccade. The duration of a sac-
cade depends on the angular distance the eyes travel during
this movement: the so-called saccade amplitude.

Fixations
A fixation is the static state of the eyes during which gaze
is held upon a specific location. Humans typically alternate
saccadic eye movements and fixations. The term “fixation”
can also be referred to as the time between two saccades
during which the eyes are relatively stationary.
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Figure 1. Denoised and baseline drift removed EOG with horizontal
(EOGh) and vertical (EOGv) signal components. The highlighted seg-
ments show the three main types of eye movement characteristic: sac-
cades (S), fixations (F) and blinks (B).

Blinks
The frontal part of the cornea is coated with a thin liquid
film, the “precornial tear film”. To spread this lacrimal fluid
across the corneal surface regular opening and closing of
the eyelids, or blinking, is required. The average blink rate
varies between 12 and 19 blinks per minute while at rest [17];
it is influenced by environmental factors (e.g. relative humid-
ity, temperature, brightness), but also by physical activity,
cognitive workload or fatigue [26].

METHOD
The methods in this work were all implemented offline us-
ing MATLAB and C. In this section, we first describe the
signal processing required for removing noise and baseline
drift, and for detecting saccades, fixations and blinks. We
then describe the features calculated from these eye move-
ment characteristics during feature extraction. Finally, we
briefly introduce the algorithms minimum redundancy max-
imum relevance (mRMR) for feature selection, and support
vector machines (SVM) for classification.

Noise and Baseline Drift Removal
EOGh and EOGv were first stripped of high frequency noise
using a median filter. For baseline drift removal, we then per-
formed an approximated multilevel 1-D wavelet decomposi-
tion at level nine using Daubechies wavelets on each signal
component. The reconstructed decomposition coefficients
gave a baseline drift estimation. Subtracting this estimation
from the original signals yielded the corrected signals with
reduced drift offset (see [27] for further details).

Saccade Detection
In an earlier work we introduced the Continuous Wavelet
Transform - Saccade Detection (CWT-SD) algorithm [4].
CWT-SD detects saccades by thresholding on the continu-
ous 1-D wavelet coefficient vector computed from the de-
noised and baseline drift removed EOGh and EOGv. Small
and large saccades are distinguished using different thresh-
olds; saccade direction is obtained from the sign of the first
derivative of the signal. To improve the algorithm’s robust-
ness to differences in EOG signal quality, we extended the

original CWT-SD algorithm; an additional step removed all
saccade candidates that did not comply to typical physiolog-
ical saccade characteristics described in literature [9].

Fixation Detection
Our algorithm for fixation detection exploits the fact that fix-
ation points tend to cluster together closely in time. Thus,
by thresholding on the dispersion of these points, fixations
can be detected [29]. In a first step, EOGh and EOGv were
divided into saccadic and non-saccadic segments using the
output from saccade detection. For each non-saccadic seg-
ment, the algorithm calculated the corresponding dispersion
and duration values. If the dispersion was below a maximum
threshold, and the duration above a minimum threshold, a
fixation was detected (see [29] for typical values).

Blink Detection
Similar to the algorithm for saccade detection, the so-called
Continuous Wavelet Transform - Blink Detection (CWT-BD)
algorithm used thresholding of wavelet coefficients to detect
blinks in EOGv. In contrast to saccades, a blink is charac-
terised by a short sequence of two large peaks in the coeffi-
cient vector: one positive, the other negative. The time be-
tween these peaks is much smaller than for saccades. Thus,
blinks were distinguished from saccades by applying a max-
imum threshold on this time difference.

Feature Extraction
Three groups of features were extracted based on the de-
tected saccades, fixations and blinks. We developed a fourth
feature group that captures sequence information from eye
movement patterns using workbooks. Table 1 details the
naming scheme used for all features. The features were cal-
culated using a sliding window (window size Wfe and step
size Sfe) on both EOGh and EOGv. From a pilot study, we
were able to fix Wfe at 30 seconds and Sfe at 0.25 seconds.

Saccade Features
Ehrlichman et al. showed that changes in the saccade rate
correlate with task requirements and the type of memory
access required to perform these tasks [10]. In this work,
features calculated from saccadic eye movements made up
the biggest portion of all features extracted. In total, we ex-
tracted 62 saccadic features: the mean, variance and maxi-
mum signal amplitudes of saccades and normalised saccade
rates. All of these features were calculated for both EOGh
and EOGv, for small and large saccades, for saccades in pos-
itive or negative direction, and for all combinations of these.

Fixation Features
Canosa et al. showed that for different tasks such as reading,
counting, talking, sorting and walking noticeable differences
can be identified in the mean fixation duration and the mean
saccade amplitude [6]. For each fixation, we calculated five
different features: the mean and the variance of the signal
amplitude within the fixation; the mean and the variance of
the fixation duration, and the fixation rate in the window.

43



Group Features

saccade
(S-)

mean (mean), variance (var) or maximum
(max) EOG signal amplitudes (Amp) or
rate (rate) of small (S) or large (L), positive
(P) or negative (N) saccades in horizontal
(Hor) or vertical (Ver) direction

fixation
(F-)

mean (mean) and/or variance (var) of the
horizontal (Hor) or vertical (Ver) EOG
signal amplitude (Amp) within or length
(Length) of a fixation or rate of fixations

blink
(B-)

mean (mean) or variance (var) of the blink
duration or blink rate (rate)

wordbook
(W-)

wordbook size (size) or maximum (max),
difference (diff) between maximum and
minimum, mean (mean) or variance (var)
of all occurrence counts (Count) in the
wordbook of length (-lx)

Table 1. Naming scheme for the features used in this work. For a par-
ticular feature, e.g. S-rateSPHor, the capital letter represents the group
- saccadic (S), blink (B), fixation (F) or wordbook(W) - and the combi-
nation of abbreviations after the dash describes the particular type of
feature and the characteristics it covers.

Blink Features
Blink rate inhibition was shown to be a good measure of at-
tentional disposition towards a visual stimuli and thus may
reflect visual engagement [22]. Caffier et al. found that pa-
rameters of spontaneous eye blinks such as the blink dura-
tion are influenced by cognitive efforts and can thus serve as
a drowsiness measure [5]. We extracted three blink features:
blink rate, and the mean and variance of blink duration.

Wordbook Features
To assess repetitive patterns of eye movements, we propose
the following wordbook analysis (see Figure 2). First, the
sequence of horizontal and vertical saccades in the window
is encoded into a combined character stream in which each
character represents one eye movement. Our implementa-
tion distinguishes between 24 eye movements of different
direction and distance. In a second step, a sliding window
is used to scan the character stream for repetitive eye move-
ment patterns. A pattern is defined as a sequence of l succes-
sive characters. For example, the pattern “LrBd” translates
to large left (L) → small right (r) → large diagonal right
(B) → small down (d). Each newly found pattern is added
to the corresponding workbook Wbl. For a pattern that is
already included in Wbl, its occurrence count is increased
by one. In this work, we analysed eye movement patterns
up to a length of four (l = 4). Thus, the output of the al-
gorithm were four wordbooks each containing the type and
number of all patterns found for a particular length. For each
of these wordbooks we extracted five features: the wordbook
size, the maximum occurrence count, the difference between
the maximum and minimum occurrence counts, and the vari-
ance and mean of all occurrence counts.

L u R G L u R K I N r d F P D

L u R G L u R K I N r d F P D

L u R G L u R K I N r d F P D

L u R G L u R K I N r d F P D

L u R G L u R K I N r d F P D

L u R

u R G

R G L

G L u

2

1

1

1

...

...
eye movement stream wordbook

Figure 2. Example wordbook encoding for eye movement patterns of
length l = 3. A sliding window scans a stream of eye movements en-
coded as characters for repetitive patterns. Newly found patterns are
added to the corresponding wordbook Wb3; otherwise only the occur-
rence count is increased by one.

Feature Selection and Classification
For feature selection, we preferred a filter scheme over com-
monly used wrapper approaches because of the lower compu-
tational costs and thus shorter runtime given the large dataset.
In this work, we chose minimum redundancy maximum rel-
evance feature selection (mRMR) as described by Peng et al.
[24]. Briefly, the mRMR algorithm selects a feature subset
of arbitrary size S that best characterises the statistical prop-
erties of the given target classes based on the ground truth
labelling. Amongst the possible underlying statistical mea-
sures described in literature, mutual information was shown
to yield the most promising results and was thus selected in
this work (see [24] for details on the algorithm, and [23] for
the MATLAB implementation we used).

For classification, we chose a linear support vector machine.
Our SVM implementation used a fast sequential dual method
for dealing with multiple classes [7]. Compared to common
schemes such as one-versus-all, the sequential approach re-
duced training time considerably (see [19] for the C imple-
mentation we used).

Evaluation and Parameter Selection
For evaluation, we followed a leave-one-person-out scheme:
the datasets of all but one participant were combined and
used for training; both datasets of the remaining participant
were combined and used for testing. This was repeated for
each participant. Feature selection was always performed
solely on the training set. During the classification process
the size of the feature set for each leave-one-person-out it-
eration was optimised with respect to recognition accuracy
by sweeping over S and the SVM cost parameter. In ad-
dition, the prediction vector returned by the classifier was
smoothed using a sliding majority window. Its main parame-
ter, the window size Wsm, was also obtained using a param-
eter sweep and fixed at 2.4 seconds. All parameters of the
saccade, fixation and blink detection algorithms were fixed
to values common to all participants.

EXPERIMENT
The experimental setup was designed with two objectives in
mind: (1) to unobtrusively record eye movements of people
performing a set of activities in a real-world environment,
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Figure 3. Experimental setup consisting of five electrodes for EOG data
collection (h: horizontal, v: vertical, r: reference). The participants’
eye movements were recorded while seated at a desk in a real office en-
vironment during normal working hours. No constraints with respect
to movements of the head and upper body were imposed.

and (2) to use these recordings to analyse and evaluate if
and how well such activities can be recognised using eye
movement analysis. We chose a scenario with five activities
typically performed at a desk during an office working day:
copying a text, reading a printed paper, taking hand-written
notes, watching a video and browsing the web. An additional
NULL class was comprised of any time participants were
distracted from their task, and a fixed period in which they
took a break.

Participants
We collected data from eight paid participants - six male and
two female - recruited from the lab and the authors’ friends.
Participants were between 23 years and 31 years old (mean
= 26.1, sd = 2.4); all were daily computer users, reporting 6
to 14 hours of use per day (mean = 9.5, sd = 2.7).

Apparatus
For EOG data collection, we used a commercial system, the
Mobi from Twente Medical Systems International (TMSI).
The device recorded a four-channel EOG with a sampling
rate of 128 Hz. It was worn on a belt around each partic-
ipant’s waist and transmitted aggregated data via Bluetooth.
Each participant was observed by an assistant who annotated
changes in activity. For annotation, we used the Nintendo
Wii controller based on good experiences in an earlier study
[4]. Data recording and synchronisation was handled by the
Context Recognition Network (CRN) Toolbox [1].

EOG signals were picked up using an array of five 24 mm
Ag/AgCl wet electrodes from Tyco Healthcare placed around
the right eye (see Figure 3). The horizontal signal was col-
lected using one electrode on the nose and another directly
across from this on the edge of the right eye socket. The
vertical signal was collected using one electrode above the
right eyebrow and another on the lower edge of the right eye

Time [min]

hEOG

EOGv

copy read write video browse NULL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Figure 4. Experimental procedure and corresponding horizontal
(EOGh) and vertical (EOGv) EOG signals for a continuous sequence of
office activities: copying a text, reading a printed paper, taking hand-
written notes, watching a video, browsing the web, and a period of no
specific activity (the NULL class).

socket. The fifth electrode, the signal reference, was placed
away from the other electrodes in the middle of the forehead.
Five participants (three male, two female) had to wear spec-
tacles during the experiment. For these participants, the nose
electrode was moved to the edge of the left eye socket to not
interfere with the glasses frame.

The experiment was performed in a real, well-lit office dur-
ing normal working hours. The participants were seated in
front of two 17“ flat screens with a resolution of 1280x1024
pixels on which a browser, a video player, a word processor
and a text for copying were already opened and ready for
use. No head stand was used; free movement of the head
and upper body were possible throughout the experiment.

Procedure
Participants were asked to follow two sequences each com-
posed of five different, randomly ordered activities plus a pe-
riod of no specific activity, the NULL class (see Figure 4 for
an example). Each activity lasted about five minutes. Over-
all, this resulted in eight hours of EOG data comprised of
similarly sized fractions for each activity and a NULL class
of about one fifth of the total dataset.

For the text copying task, the original document was shown
on the right screen while the word processor was opened on
the left. The participants were free in the way they copied
the text. Some touch typed and only checked for errors in
the text from time to time; others continuously switched at-
tention between the screens or the keyboard while typing.
Because the screens were more than half a meter from the
participants’ faces, the video was shown full screen to elicit
more distinct eye movements. For the browsing task, no con-
straints were imposed concerning the type of website or the
manner of interaction. For the reading and writing tasks, a
book (12 pt, one column with pictures) and a pad with a pen
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read browse write video copy

W-maxCount-l2 S-rateSPHor W-varCount-l4 F-meanVarVertAmp S-varAmp
W-meanCount-l4 W-varCount-l4 F-meanVarVertAmp F-meanVarHorAmp S-meanAmpSNHor
W-varCount-l2 W-varCount-l3 F-varLength B-rate S-meanAmpLPHor

F-varLength W-varCount-l2 F-meanLength S-varAmpNHor S-rateS
B-rate W-meanCount-l1 S-rateLPVer S-meanAmpSPHor F-meanVarHorAmp

Table 2. Top five features selected by mRMR for each activity over all training sets (see Table 1 for a description of each feature).
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Figure 5. Top 15 features selected by mRMR for all eight training sets.
X-axis shows feature number and group; the key on the right shows
the corresponding feature names as described in Table 1; Y-axis shows
the rank (top = 1). For each feature, the bars show: the total number
of training sets for which the feature was chosen (bold number at the
top), the rank of the feature within each set (dots, with a number rep-
resenting the set count), and the median rank over all sets (black star).
For example, a useful feature is 47 (S) - a saccadic feature selected for
all sets, in 7 of which it is ranked 1 or 2; less useful is 63 (B) - a blink
feature used in only 5 sets and ranked between 4 and 29.

were provided. Data was also gathered from a period during
which the participants took a break (included in the NULL
class). No activity was required of them but they were asked
not to engage in any of the other studied activities.

RESULTS

Eye Movement Features
We first analysed how mRMR ranked the features on each
of the eight leave-one-person-out training sets. The rank of
a feature is the position at which mRMR selected it within a
set. The position corresponds to the importance with which
mRMR assesses the feature’s ability to discriminate between
classes in combination with the features ranked before it.
Figure 5 shows the top 15 features according to the median
rank over all sets (see Table 1 for a description of the type
and name of the features). Each vertical bar represents the
spread of mRMR ranks: for each feature there is one rank
per training set. The most useful features are those found
with the highest rank (close to one) for most training sets,
indicated by shorter bars. Our classification scheme chose
the best recognition accuracy based on a sweep of the num-
ber of features for each set. Thus, some features are not
included in the final result (e.g. feature 63 only appears in
five sets). Equally, a useful feature that is ranked lowly by

mRMR might be the one that improves a classification (e.g.
feature 68 is spread between rank five and 26, but is included
in all eight sets).

This analysis reveals that the top three features, as judged
by high ranks for all sets, are all based on horizontal sac-
cades: 47 (S-rateSPHor), 56 (S-maxAmpPHor) and 10 (S-
meanAmpSHor). Feature 68 (fixation rate) is used by all
sets, seven of which rank it highly. Feature 63 (blink rate)
is selected for five out of the eight sets, only one of which
gives it a high rank. And although wordbook features 77 (W-
maxCount-l2) and 85 (W-maxCount-l3) are not used in one
of the sets, they are highly ranked by the other seven.

We performed an additional study into the effect of optimis-
ing mRMR for each activity class. For this, we combined
all training sets and performed a one-versus-many mRMR
for each non-NULL activity. The top five features selected
during this evaluation are shown in Table 2. For example,
the table reveals that reading and browsing can be described
using wordbook features. Writing additionally requires fix-
ation features. Video is described by a mixture of fixations
and saccades in all directions and - as reading - the blink rate,
while the copy task involves mainly horizontal saccades.

Classification Performance
The SVM classification was compared to the annotated ground
truth. Classification performance was then scored in two
ways: using a time-based confusion matrix, and using the
additional error categories introduced in [28]. For specific
results on each participant, or on each activity, class-relative
precision and recall metrics were used. Precision was de-
fined as correctc

outputc
and recall as correctc

totalc
for each class c.

Table 3 shows the average precision and recall for each par-
ticipant. Here we see a range of differences in recognition
performance. The highest performance was achieved for
participants six (89.2% precision, 86.9% recall) and seven
(93.0% precision, 81.9% recall). The worst results were for
participants four (46.6% precision, 47.9% recall) and five
(59.5% precision, 46.0% recall). The mean performance
over all participants is 76.1% precision and 70.5% recall.

Figure 6 plots the classification results in terms of precision
and recall for each activity and participant. The best results
approach the top right corner while worst results are close to
the lower left. For most activities, precision and recall fall
within the top right corner. Participant four, however, com-
pletely fails for the reading and copying task and also shows
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P1 (m) P2 (m) P3 (m) P4 (m) P5(m) P6 (f) P7 (f) P8 (m) Mean
Precision 76.6 88.3 83.0 46.6 59.5 89.2 93.0 72.9 76.1
Recall 69.4 77.8 72.2 47.9 46.0 86.9 81.9 81.9 70.5

Table 3. Precision and recall for each participant using SVM. The gender is given in brackets; best and worst results are indicated in bold.
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Figure 6. Precision and recall for each activity and participant using SVM. Black stars mark the mean performance over all participants.

noticeably lower precision for browsing. For participant five,
similar but less strong characteristics apply for the reading,
writing and browsing task.

The summed confusion matrix from all participant sets, nor-
malised across ground truth rows, is given in Figure 7. Cor-
rect recognition is shown on the diagonal; substitution errors
are off-diagonal. The largest between-class substitution er-
rors, those not involving NULL, fall between 12% and 13%
of their respective class times. Most of these errors involve
the browse activity, which is falsely returned during 13%
each of read, write and copy activities. A similar amount is
substituted by read during browse time.

The error division diagram (EDD) of Figure 8 shows an al-
ternative representation of these results. The EDD treats an
activity as “positive” and NULL as “negative”. The substitu-
tion errors from the confusion matrix are summed together,
with a more detailed breakdown shown for the errors relat-
ing to NULL: false negatives (FN) and false positives (FP).
The FN errors include: deletion (activity not detected), frag-
menting (fragments of NULL within a correct activity) and
underfill (the false NULL time at the beginning and end of
a correct activity). The FP errors include: insertion (an ac-
tivity falsely returned during NULL), merge (the NULL time
lost when two activities are detected as one), and overfill (the
NULL time lost by a correct activity spilling over its bound-
aries). We see that 7.1% of the total time is underfill and
overfill. These are cases where the fault may be slightly off-
set labelling, or delays in the recognition system. The errors
that might be regarded as more serious - merge, insertion,
fragmentation, deletion and substitution - account for 20.1%
of the total experiment time.

DISCUSSION

Feature Groups
The mRMR-based feature selection presented here provides
a snapshot of the types of eye movement features that might
be used for activity recognition. Features from three of the
four proposed groups - saccade, fixation and wordbook - were
all prominently represented in our study. It has to be noted
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Figure 7. Summed confusion matrix from all participant sets for SVM,
normalised across ground truth rows.
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NULL: 19.5%
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TN 16.0%

Figure 8. Error division diagram (EDD) for SVM over all participants
showing the proportion of the total dataset comprising: true positives
(TP), true negatives (TN), overfills (O), underfills (U), merges (M), in-
sertions (I), deletions (D), fragmentations (F), and substitutions (S).

that no-one feature type performs well alone. The best per-
formance results were always obtained using a mixture of
different features. Among these, the fixation rate was always
selected. This result is akin to that of Canosa et al. who

47



found that both fixation duration and saccade amplitude are
strong indicators of certain activities [6].

Features derived from blinks are less well represented in the
top ranks. One explanation for this might be that for the short
activity duration of only five minutes the participants did not
become fully engaged in the tasks, and were thus less likely
to show the characteristic blink rate variations suggested by
Palomba et al. [22]. These features may be found to be more
discriminative for longer duration activities. Coupled with
the ease by which they were calculated, we believe blink
features are still very promising for future work.

The wordbook encoding scheme introduced in this work pro-
duced two top ranking features for all but one of the partic-
ipants. Both features describe short sequences of only two
and three successive eye movements. This indicates the ex-
istence of underlying eye movement atoms, and might be
further explored as a basis for a grammar-based approach to
eye-based activity recognition.

Features for Each Activity
The analysis of the best features for each activity class is
particularly revealing.

Reading is a regular pattern characterised by a very specific
sequence of saccades and short fixations of similar duration.
Consequently, mRMR chose mostly wordbook features de-
scribing eye movement sequencing in its top ranks, as well
as a feature describing the fixation length variance. The fifth
feature, the blink rate, reflects that for reading as an activity
of high visual engagement people tend to blink less [22].

Browsing is a highly unstructured activity that - depending
on the website being viewed - may be comprised of differ-
ent activities, e.g. watching a video, typing or looking at
a picture. In addition to the small, horizontal saccade rate,
mRMR also selected several workbook features of varying
lengths. This is probably due to our participants’ brows-
ing activities containing mostly sequences of variable length
reading such as scanning headlines or searching for a prod-
uct in a list.

The writing activity is similar to reading, but requires greater
fixation duration (it takes longer to write a word than to read
it) and greater variance. mRMR correspondingly selected
average fixation length and its variance as well as a word-
book feature. However, this activity is also characterised by
short thinking pauses, during which people invariably look
up. This corresponds extremely well to the choice of the
fixation feature that captures variance in vertical position.

Watching a video is a completely unstructured activity, but
is carried out within a narrow field of view. The lack of a
wordbook feature reflects this, as does the mixed selection of
features based on all three types: variance of both horizontal
and vertical fixation positions, small positive and negative
saccadic movements, and blink rate. The use of blink rate
likely reflects the tendency towards blink inhibition when
performing an engaging yet sedentary task [22].

Finally, the copy task involves many back and forth saccades
between screens. mRMR reflects this by choosing as its top
selection a mixture of small and large horizontal saccade fea-
tures, as well as variance in horizontal fixation positions.

Robustness Across Participants
All parameters of the saccade, fixation and blink detection al-
gorithms were fixed to values common to all participants; the
same applies to the parameters of the feature selection and
classification algorithms. Despite person-independent train-
ing, six out of the eight participants returned best average
precision and recall values of between 69% and 93% using
the SVM classifier. However, two participants returned re-
sults that were lower than 50%. Participant four had zero cor-
rect classifications for both reading and copying, and close
to zero recall for writing; participant five had close to zero
recall for reading and browsing. On closer inspection of the
raw EOG data, it turned out that in both cases the signal
quality was much worse compared to the others. The signal
amplitude changes for saccades and blinks - upon which fea-
ture extraction and thus classification performance heavily
depend - were not distinctive enough to be reliably detected.
As was found in an earlier study [4], dry skin or poor elec-
trode placement are the most likely culprits.

Results for Each Activity
As might have been expected, reading is detected with com-
parable accuracy to that reported previously [4]. However,
the methods used are quite different. The string matching
approach used in the earlier study makes use of a specific
“reading pattern”. That approach is not suited for activities
involving less homogeneous eye movement patterns. For ex-
ample, one could not expect to find a similarly unique pattern
for browsing or watching a video as there exists for reading.
This is because eye movements show much more variability
during these activities as they are driven by an ever-changing
stimulus. As shown in this work, the feature-based approach
is much more flexible and scales better with the number and
type of activities that are to be recognised.

Accordingly, we are now able to recognise four additional
activities - web browsing, writing on paper, watching video,
and copying text - with almost, or above, 70% precision
and 70% recall. Particularly impressive is video, which is
recognised with an average precision of 88% and recall of
80%. This is indicative of a task where the user might be
concentrated on a relatively small field of view (like read-
ing), but follows a more or less unstructured path (unlike
reading). Similar examples outside the current study might
include interacting with a graphical user interface or watch-
ing television at home. Writing is very similar to reading in
that the eyes follow a structured path, albeit at a slower rate.
It involves more eye “distractions” - when the person looks
up to think, for example. Browsing is recognised less well
over all participants (average precision 79%, recall 63%) -
but with a large spread between people. A likely reason for
this is that it is not only unstructured, but that it involves a va-
riety of sub-activities - including reading - that may need to
be modelled. The copy activity, with an average precision of
76% and a recall of 66%, is representative of activities with
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a small field of view that include regular shifts in attention
(in this case to another screen). A comparable activity out-
side the chosen office scenario might be driving, where the
eyes are on the road ahead with occasional checks to the side
mirrors. Three of these activities, writing, copy and browse,
all include sections of reading. From quick checks over what
has been written or copied, to longer perusals of online text,
reading is a pervasive sub-activity in this scenario. This is
confirmed by the relatively high rate of substitution errors
involving reading shown in Figure 7.

Finally, the NULL class returns a high recall of 81%. How-
ever, there are many false returns (activity false negatives)
for half of the participants, resulting in a precision of only
66%. Closer inspection of Figure 8 indicates that many of
the false NULL results (6.1% of the total dataset) are in fact
attributed to underfill - an error that is recorded when an ac-
tivity class is correctly detected, but is detected after the start
and before the end of its corresponding annotation. With a
more accurate annotation scheme that removes most of these
underfill errors - for example based on video recordings - we
believe a NULL precision of around 80% is possible.

Limitations and Considerations for Future Work
Although the experimental scenario in this work only consid-
ered a handful of specific activities within an office setting,
the study does reveal a number of very useful findings for
the general problem of activity and context recognition us-
ing eye movement analysis.

Firstly, that eye movement analysis alone, i.e. without any in-
formation on gaze, can serve as an alternative sensing modal-
ity for recognising human activity. So far, only reading ac-
tivity was studied in this way [4]. One of the results from
the current work is the successful recognition of four addi-
tional activities. We view this as an initial proof of concept
towards recognising more general activities. We believe that
the feature set and recognition methodology developed here
are equally applicable to a more general recognition problem.
For recording eye movements, we chose EOG over common
video-based eye trackers because of its simpler signal pro-
cessing and thus potentially longer runtime. This is crucial
with a view to long-term recordings in mobile settings. It is
important to note, however, that the current approach is not
limited to EOG. All of the features described previously can
be extracted equally well from eye movement data recorded
using a video-based eye tracker.

This leads to the second main finding. Good recognition re-
sults are achieved by using a mixture of features based on
the fundamentals of eye movements. Sequence information
on eye movement patterns, in the form of a wordbook encod-
ing, also proved very useful and can probably be extended
to capture additional statistical properties. Different recogni-
tion tasks will likely require different combinations of these
features. For this reason, we recommend that a large number
of features based on a mixture of all of these feature types
be considered initially for each new task. Additional fea-
tures such as pupil diameter may lead to further improved
recognition performance.

Finally, the study reveals some of the complexity one might
face in using the eyes as a source of information on user con-
text. The ubiquity of the eyes’ involvement in everything a
person does means that it is challenging to annotate precisely
what is being “done” at any one time. It is also a challenge
to define a single identifiable activity. The reading task is
perhaps one of the easiest to capture because of the inten-
sity of eye focus that is required and the well defined paths
that the eyes follow. A task such as web browsing is more
difficult because of the wide variety of different eye move-
ments involved. It is challenging, too, to separate relevant
eye movements from momentary distractions.

These problems may be solved, in part, by an annotation
process that uses video and precise gaze tracking. Activi-
ties from the current scenario could be redefined at a smaller
time scale, breaking web-browsing into smaller activities such
as “use scrollbar”, “read”, “look at image”, “type”, and so on.
This would also allow us to investigate more complicated
activities outside the office. An alternative route would be
to study activities at larger time scales, to perform situation
analysis rather than recognition of specific activities. Longer
term eye movement features, for example the average eye
movement velocity and blink rate over one hour, might be
useful in revealing whether a person is walking along an
empty or busy street, whether they are at their desk work-
ing, or whether they are at home watching television. Again,
annotation will be an issue, but one that may be alleviated
using unsupervised or self-labelling methods [16, 2].

The ways our eyes move in daily life are an indicator for
what we do. Moreover, they are linked to cognitive processes
of visual perception. Thus, if it were possible to infer cogni-
tive behaviour from eye movement - such as memory, learn-
ing or attention - this might add a new cognitive dimension
to the common understanding of context-awareness.

CONCLUSION
In this work we proposed the use of eye movement analysis
as a novel modality for the recognition of physical activity.
We devised 90 features specifically geared towards captur-
ing a wide variety of eye movement characteristics. Using
wearable EOG recordings from an eight participant study,
we showed that we can recognise five different physical of-
fice activities from a continuous sequence.

The importance of these findings lies in their fundamental
significance for eye movement analysis to become a general
tool for the recognition of human activity. The developed
feature set and recognition methodology are not limited to
the chosen setting, activities or eye tracking equipment. In-
stead, the current work shows that eye movement analysis
has the potential to be successfully applied to many other ac-
tivity recognition problems in a variety of different settings
and for a broad range of visual and physical activities.
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